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M I C R O C O N V E C T I O N  IN W E A K  FORCE FIELDS.  

A N U M E R I C A L  C O M P A R I S O N  OF T W O  M O D E L S  

O. N. Goncharova UDC 532.517.013.4:563.252 

Mathematical models describing the thermal gravitational convection in weak force fields are presented. 
They are the classical Oberbeck-Boussinesq model and a new model by V. V. Pukhnachev for microconvection 
of an isothermally incompressible fluid. Convective fluid flows in annular domains are investigated in various 
temperature regimes at the boundaries of and in a varying gravity field. Results of a numerical analysis 
performed by both models are presented. The qualitative and quantitative differences in the flow characteristics 
under the action of microaccelerations attainable at a space station are verified. 

1. I n t r o d u c t i o n .  The Oberbeck-Boussinesq system of equations is a classical mathematical model for 
describing the thermal gravitational convection. Based on the analysis of the assumptions made in derivation 
of this system from the exact equations of continuum mechanics, V. V. Pukhnachev [1] proposed a new model 
to investigate the convection in domains of small extension, in weak gravity or fast-varying temperature 
fields. The velocity field in this model is nonsolenoidal. However, in the case of a linear dependence of the 
specific fluid volume v = l i p  on the temperature T, the system obtained is transformed to a system in 
which the modified velocity vector becomes solenoidal, thus making it possible to introduce a stream function 
for plane and axisymmetric problems. In a stream function-vorticity formulation, calculations are performed 
of convective flows in a microacceleration field which vary in magnitude and direction and under various 
boundary temperature regimes. We used herein the method of calculation of convective flows which was 
developed for problems of free convection in double-connected domains and was based on the linear model 
of microconvection [2, 3] and also the method of parametric sweep which was developed by A. F. Voyevodin 
[4] and which is exactly subject to the no-slip conditions at the boundaries of the domains. The problems of 
convective motions of silicon, glycerin, and some types of glass in the case where the order of magnitude of a 
new similarity criterion gl3/ux (the Pukhnachev number) is smaller than or equal to unity are investigated 
numerically. Here g is the acceleration of gravity, l is the characteristic size of the domain, u is the kinematic 
viscosity, and X is the thermal diffusivity. 

2. F o r m u l a t i o n  of  t h e  P r o b l e m .  New Model  This model is based on the following assumptions [1, 5]: 
(1) the fluid density p is a function of its temperature T (the fluid is isothermally incompressible); 
(2) the fluid potential energy in the field of gravity forces is much smaller than its internal energy; 
(3) dissipation of the kinetic energy in the process of motion is negligibly small; 
(4) the dynamic viscosity #, the thermal conductivity k, and the specific heat c are assumed to be 

constant. 
The system of equations for conservation of mass, momentum, and energy is written in the form 

pt + V .  •p + p V V  = O, p(Vt + V .  xYV) = - V P '  + # A V  + pg, p(Tt + V .  VT) = 6AT. (2.1) 

Here V is the velocity, P~ = P - ~divV, where P is the modified pressure and ~ is the second coefficient of 
viscosity, ( )t = O( )/Ot, and ~ = k/c. 

System (2.1) is closed by the equation of state p = R(T),  where R is a given function of T. 
For p = p.(1 + fiT) -1, the original system (2.1) is transformed into the following form in which the 

modified velocity vector W = V - f l x V T  becomes solenoidal: 

d i v W = 0 ,  
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Wt + W .  V W  + / 3 x ( V T .  V W  - V W .  VT)  + I~2x2(ATVT - VIVTI2/2) 
= (1 + j 3 T ) ( - V q  + u A W )  - 13Tg, Tt + W .  V T  +/3xIVT[ 2 = (1 + 13T)xAT. (2.2) 

Here q = P' /p ,  - g �9 x - / 3 ( t ,  - X ) x A T  is the modified pressure, /3 is the coefficient of thermal  expansion, 
u = It~p,, and X = 5/p, ,  and p,  is the characteristic density. 

We find the functions W and T, which satisfy the initial 

and boundary 

conditions with 

W = W o ( x ) ,  T = T o ( x ) ,  x e s  t = 0  (2.3) 

W = - / 3 x V T ,  OT/On = f ( x ,  t), x �9 E, t E [0, t,] (2.4) 

/ f (x ,  t)dE 0 

E 

(~ is the flow domain and E is its boundary).  
The Oberbeck-Boussinesq Model  Derivation of the Oberbeck-Boussinesq model  of the thermal 

gravitational convection is not discussed in detail (see, for example, [5]). The  initial boundary-value problem 
for the Oberbeck-Boussinesq system [5] is to find the velocity V, the temperature  T, and the modified pressure 
P~ which satisfy the following system: 

divV = 0, Vt + V-  V V  = - V P '  + u A V  - / 3 T g ,  

and the following initial 

Tt + V . V T  = x A T  ( P' = PIP.  - g" x) 
(2.5) 

V = O, T = To(x), x E ~,  t = 0 (2.6) 

and boundary conditions: 
v = o, OT/O,~ = f(~, t), �9 ~ ~, t ~ [0, t,].  (2.7) 

3. N u m e r i c a l  S i m u l a t i o n .  The  unsteady convective motion of fluids in an annular  domain is studied 
numerically. Systems (2.2) and (2.5) are considered in the polar coordinates (r, 0). In variables (~b,w), the 
equations are wri t ten in the form 

wt = kAw + fw; (3.1) 

A r  = - w ;  (3.2) 

= ~ A T  + fT, (3.3) 

and :~, and also the initial (2.3) and (2.6) and boundary 
models as follows. 

OTOaT OTO ,T)I 
Or 0-----o + OO ~ 1']  

Tt 

where the functions f~ and fT,  the coefficients 
(2.4) and (2.7) conditions are specified for both 

For the new model,  we have 

f ~ = -  v-b-7 + - + ~  r - ~  00 Or 

-g ,  - / 3  X w A T  + + + ~ go-g-/ . . . .  /3 2 x ~ 
r -00 Or Or r 2 0 0 - ~  

{v OT u OT)  
fT = - \ -0-7 + - r - ~  - ~xIVTI2 

00 '  , gr = 90 cos(et) sin 0, g0 = 

= (1 + ~T)~,  2 --- (1 + ~T)~ .  
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The initial conditions 

t = 0 :  w = 0 ,  ~b=0, 

and the boundary conditions for I = 0 

and for I = 1 

T = T o ,  

0r ,_lOT OT 
r = R l :  r  or==zxR1 00' o r - O '  

0r _lOT 
r = R2: r = -~xR2f(t)sinO, 0--~= ~xR 2 00' 

r = R,: ~b = -flXRlf(t)sinO, 

0r OT 
r = R 2 :  ~ , = 0 ,  Or ~xR2100'  

For the Oberbeck-Boussinesq model, we have 

( O w  u0~0) ( 0T 1 0~0 ) 
f ~ = -  v-~r+-r + fl g~ ' 

V = (v, u) = 00 '  ' 

The initial conditions 
t = 0 :  

and the boundary conditions for I = 0 

OT 
Or - f(t)  cos O; 

and for I = 1 

0 r  10T  OT 
0---~ = t3xR-1 00' Or = f(t) cos O, 

OT 
- - ~ 0 .  
Or 

(rOT u OT) 
f T = - - k  ~ r + -  

g~ = gocos(r go = go cos(et)cosO], ~ = u, 

~ = 0 ,  r  T=To ,  

0r OT 
r = RI: ~ -= 0, Or 0, Or - O, 

OT O~b _ O, - -  = f ( t )cosO;  r = R 2 :  r  0 - -~-  Or 

2 = X .  

cOT 
0 r  O, - - =  f ( t )  cosO, r = R l :  f = 0 ,  0--T= 0r 

0r OT 
r = R 2 :  r  Or O, Or - 0 "  

The two types of boundary conditions correspond to two types of temperature regimes: we have the 
heat transfer through the outer boundary of the domain and the insulation of the inner boundary for I = 0 
and the opposite situation for I = I. 

To solve the problem numerically, the method of calculation of convective flows in doubly-connected 
domains [2] is used. We introduce a difference grid 

rn = R1 + (n - 1)h, n = 1 , . . . ,  N + 1, h = (R2 - R1) /N;  

0 m = ( m - 1 ) a ,  m = l , . . . , M + l ,  a = 2 r / M ;  t k=kr ,  k = l ,  2 , . . . .  

A longitudinal-transverse finite-difference scheme for Eqs. (3.1) and (3.3) is written in the following 
general form: 

uk+l/2 _ U k 
= A(A1U k + A2U k+1/2) + F k+1/2, 

0.5r 
uk+ 1 _ uk+l/2 

0.57" = A(A1Uk+I + A2uk+I/2) + Fk+l/2" 
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I=0 -- I=0 

~ ~ - . . .  ". ; ;~.~;1 � 9  

Fig. 1 Fig. 2 Fig. 3 

�9 �9 �9 I $ / ~  _ _  

�9 , I  t t X . ,  ~ , ' -  

�9 , ~  . . . . .  
I 

, ~ I t I 1 1  ~ , ~ s  Y ~ . ~ . ~ . ~ .  ~ l  ~ ,  , : 1  

t=o 

Fig. 4 Fig. 5 

Here U k = U(tk), U = (~),  and A1 and A2 are the difference operators which approximate, respectively, the 
differential operators 

l a  0 1 0 2 
r orrOr '  r2 002, A = ~  or A=;~.  

To solve the Poisson equation (3.2) (As is an iteration parameter),  the iterative scheme 

O.5r 
~s+l _ ~s+1/2 

= As(A142 s+l[2 + A2~b s A- cos+l/2), 

= As(A142s+1[2 + A2~S+l + cos+l~2) 
0.5~" 

is used at each time level. 
The method of cyclic sweep is employed to find T k+1/2, w k+1/2, and r and the so-called method of 

parametric sweep [4], according to which con,m = Pn,mcoN+l,m + Qn,mcol,m -4- Rn,m and ~bn,m = t:)n,rncoN+l,rn + 
Qn,mcol,m + [:t,,m, is used to solve the difference equations for cok+l and ~s+1/2. 

4. R e s u l t s  of  N u m e r i c a l  I nves t i ga t i on .  Calculations of convective flows in a varying field of 
microaccelerations [9 = 9o cos(et), 9o = 10 -3 cm/sec 2, and ~ = 10 -1 sec -1] are carried out on a 21 x 21 
grid in an annular domain 0.1 cm = R1 ~< r <~ R2 = 1.1 cm, 0 ~< 0 ~< 2a" for silicon, glycerin, and glass. 

The values of the Prandt l  Pr, Grashof Gr, and Pukhnachev Pu numbers (Pr = v/x,  Gr = g/3T.13/vx, 
and Pu = 91a/vx, where T. is the characteristic temperature  difference and l = R2 - Rx) are given in Table 1. 
The heat transfer through the external or internal boundary of the domain is governed by the following law: 

O T / O r  = H ( t )  cos 0, H ( t )  = (7"1 - T o ) ( t / t l )  + To, t <<. t l ,  H ( t )  = T~, t > t l ,  

(tl = 60 sec, To = 35~ T1 = 70~ and T. = To). 
The calculations have displayed a qualitative difference in the flow patterns calculated by two different 

models. This is true primarily for the structure of the flow and its topology and development in time�9 Figures 
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TABLE 1 

Substance Pr Gr Pu 

Silicon 10 -3 10 -4 1 
Glycerin 104 10 -3 10 - t  
Glass 104 10 -6 10 -2 

TABLE 2 

Substance 

Silicon 
Glycerin 
Glass 

Oberbeck-Boussinesq model New model 

fuh IvJ, cm/sec 
10-s_10-8 10-5-10-4 
10-9_10-s 10-6_10-5 

10-13_10-10 10-7_10-6 

1-5 show velocity fields and isotherms for silicon at t = 120 sec. These patterns are typical of glycerin and 
glass. 

Figures 1-4 demonstrate the velocity field of molten silicon at moment t = 120 sec for Pu = 1, and Fig. 5 
shows the behavior of isotherms under these conditions. Figure 1 (the Oberbeck-Boussinesq model, I = 0) 
shows the velocity field which has the structure of rotational motion with axial symmetry, the external and 
internal layers of the fluid rotating in different directions. There are two small symmetrically located vortices 
between these layers: in the upper and lower semicircles for silicon and in the right and left semicircles for 
glycerin and glass. 

The four-vortex flow structure is observed in Fig. 2 (Oberbeck-Boussinesq model, I = 1). For silicon, 
the region occupied by the upper and lower vortices is wider, and, for glycerin and glass, the zones occupied 
by the right and left vortices are wider. 

The two-vortex structure is well discerned in Fig. 3 (new model, I = 0). The rotation of the vortex is 
clockwise in the upper half-plane and anticlockwise in the lower half-plane. 

As for I = 0, the velocity field is of a two-vortex structure in Fig. 4 (new model, I = 1), but the 
direction of rotation is opposite. 

The calculations have shown that there is only a small quantitative difference between the temperature 
fields obtained by the two different models. Qualitatively, only two types of families of isotherms which 
correspond to two different types of boundary conditions (Fig. 5, I = 0 and I = 1) are observed. 

The quantitative characteristics, namely, the orders of magnitude of the velocities, are given for all 
fluids and for two models in Table 2 (t = 120 sec). 
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